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Two-soliton collisions in a near-integrable lattice system
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We examine collisions between identical solitons in a weakly perturbed Ablowitz-Ladik~AL ! model, aug-
mented by either onsite cubic nonlinearity~which corresponds to the Salerno model, and may be realized as an
array of strongly overlapping nonlinear optical waveguides! or a quintic perturbation, or both. Complex
dependences of the outcomes of the collisions on the initial phase difference between the solitons and location
of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are
generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is fragile~for
instance, the Salerno’s perturbation with the relative strength of 0.08 can give rise to a change of the solitons’
amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are
examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation,
but completely destroy the conservation of the lattice momentum, which is explained by the absence of the
translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of
collisions correlate with this conclusion. Asymmetry of the collisions~which is explained by the dependence
on the location of the central point of the collision relative to the lattice, and on the phase difference between
the solitons! is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the
perturbation strength. Different perturbations~cubic and quintic ones! produce virtually identical collision-
induced effects, which makes it possible to compensate them, thus finding a special perturbed system with
almost elastic soliton collisions.
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I. INTRODUCTION

Soliton collisions constitute one of the central topics
nonlinear-wave dynamics. In integrable systems, solitons
well known to emerge unscathed from collisions@1#. How-
ever, even small nonintegrable perturbations may render
phenomenology much richer, causing various inelastic
fects, such as trapping and formation of bound sta
multiple-bounce interactions~where solitons separate afte
multiple collisions! @2#, fractality in the outcome of the col
lision @3,4#, and others. Such complex features are usu
attributed to the excitation of soliton internal modes@2,4,5#,
but more recently it was realized that they also occur due
the possibility for radiationless energy exchange~even in the
absence of internal modes! between the colliding solitons
should the conservation laws allow it@6,7#. The latter mecha-
nism was both confirmed by direct simulations of the cor
sponding nonintegrable models, and might be expecte
follow from the principle stating that any outcome comp
ible with the conservation laws may take place under app
priate initial conditions.

Such effects suggest that the integrability is essenti
tantamount to the strictly elastic character of the collisio
@1#, and warrant the importance of further studies of stron
inelastic collision effects produced by small conservat
perturbations added to basic integrable models. This gen
issue is of interest not only in its own right, but also f
applications to nonlinear optical waveguides, as stro
changes in the character of the interaction induced by a s
perturbation may be naturally used in the context of swit
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ing, see, e.g., Ref.@8# and references therein.
The objective of the present work is to consider such

fects in collisions of nontopological solitons in adiscrete
near-integrable system. As a matter of fact, the only in
grable system which can be used in this case as the ze
order approximation is the Ablowitz-Ladik~AL ! lattice @9#.
Its well-known nonintegrable extension is the Salerno mo
~SM! @10#, which is produced by adding the integrability
breaking perturbation in the form of the onsite nonlinear
to the integrable AL system with the intersite cubic nonli
earity. In order to test if the results that will be obtaine
below are generic, we will also consider an essentially d
ferent type of an integrability-breaking conservative pert
bation, viz., the quintic onsite nonlinearity@its principal dif-
ference from the cubic counterpart is that it breaks
integrability of both the AL lattice and of its continuum limit
i.e., the nonlinear Schro¨dinger ~NLS! equation#.

Thus, we introduce a general dynamical model based
the following equation:

i ċn1~2h2!21~cn2122cn1cn11!1ducnu2cn

1~1/2!~12d!ucnu2~cn111cn21!5«ucnu4cn .

~1!

Herecn is the complex dynamical variable at thenth site of
the lattice, the overdot stands for the time derivative,h is the
lattice spacing,« is a real constant controlling the quinti
perturbation, andd is a real parameter that accounts for t
crossover between the AL (d50,«50) and discrete-NLS
©2003 The American Physical Society03-1
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(d51,«50) @11# limits. Equation~1! conserves two dynami
cal invariants, namely, the norm

N5
1

12d (
n

ln@11h2~12d!ucnu2# ~2!

and the energy~Hamiltonian!

H52(
n

H h2~12d!1«

h2~12d!3
ln@11h2~12d!ucnu2#

2
h2~12d!1«

~12d!2
ucnu21

h2

2
ucn2cn21u2

1
«h2

2~12d!
ucnu4J . ~3!

While the discrete NLS equation, corresponding tod51
and«50 in Eq. ~1!, has numerous physical realizations, t
most important one being arrays of nonlinear opti
waveguides@12#, the AL model does not directly apply t
many physical systems because of the specific characte
the nonlinear terms in it. However, a realization of the S
may be an array ofstrongly overlappingnonlinear optical
waveguides, especially the one following a zigzag patt
~similar to an array introduced in Ref.@13#!. Indeed, the
overlapping between adjacent cores will give rise, throu
the Kerr effect, to a nonlinear correction to the linear co
pling between the cores, in the form of the terms;(12d) in
Eq. ~1!. It should be noted that, in this case, extra pertur
tion terms are expected too, such as (ucn21u21ucn11u2)cn
~cross-phase modulation!. However, the results presented b
low clearly demonstrate that strong effects generated
small conservative perturbations are essentially the same
different perturbations, therefore we expect that taking i
account all the possible perturbation terms correspondin
the optical waveguides with strong overlap between
cores will not alter the results significantly.

In some specific cases, soliton collisions in the SM ha
already been examined. In particular, a collision betwee
soliton and a reflecting wall, which is equivalent to a stric
symmetric collision between the soliton and its mirror imag
was studied numerically in Ref.@14#. One of our aims is to
explore the sensitivity of collisions to asymmetries in init
phases and positions of the solitons in the actual two-sol
collision. Very recently, collisions in the~strongly noninte-
grable! discrete NLS equation were examined@15#, and
symmetry-breaking effects were found, along with sensi
ity of the outcome to the location of the collision point. Her
we present results of collisions and their dependence on
rameters in model~1! with small d and«, i.e., close to the
integrable AL limit. Together with the already available fin
ings for the strongly nonintegrable case@15#, they provide
a sufficiently comprehensive description of the collision
dynamics of nontopological solitons in fundamental latt
systems.
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The AL model @Eq. ~1! with d50 and«50] has exact
soliton solutions of the form

cn~ t !5
1

h

sinhm

cosh$m@n2x~ t !#%
exp$ ik@n2x~ t !#1 ia~ t !%,

~4!

where the instantaneous coordinate and phase of the so
are

x~ t !5x01
t

h2
~sink!

sinhm

m
,

a~ t !5a01
t

h2 F ~cosk!coshm1k~sink!
sinhm

m
21G .

~5!

x0 and a0 are their initial values, whilem and k define the
soliton’s amplitudeA and velocityV,

A5h22sinh2m, V5~mh!21~sinhm!sink. ~6!

The infinitely long AL system has an infinite series
dynamical invariants, the lowest ones being the norm, lat
momentum, and energy:

N5(
n

ln~11h2ucnu2!, ~7!

P5 ih2(
n

~cncn11* 2cn* cn11!, ~8!

Q5
1

2
h2(

n
~cncn11* 1cn* cn11!. ~9!

Note that the norm of the general nonintegrable model~1!,
given by expression~2!, goes over into norm~7! in the limit
d5«50, and Hamiltonian~3! of the nonintegrable mode
becomes, in the same limit, a linear combination of norm~7!
and energy~9! of the AL integrable system:H(d5«50)
[2(N1Q). It will be seen below that, as a matter of fac
the difference between the exact norm and Hamiltonian
the full perturbed model with smalld and« and those of the
AL model is negligible. However, all the other dynamic
invariants of the AL model,including the lattice momentum
~8!, have no counterparts in the nonintegrable case. Thi
explained by the fact that each elementary dynamical inv
ant is generated by a certain continuum invariance of
underlying equation. In particular, the norm and energy c
servation are accounted for by the invariance against ph
and time shifts, respectively, that remain valid in the non
tegrable system, while a dynamical symmetry of the A
model which is responsible for the conservation of the latt
momentum is destroyed by the small perturbations. The m
mentum remains a dynamical invariant in continuu
3-2
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nonintegrable models~e.g., the NLS equation with the quin
tic term!, but in the discrete setting it is conserved solely
the integrable case—obviously, a generic lattice system
not invariant against arbitrary spatial translations. Furt
consideration of this issue can be found in a recent w
@16#.

An issue related to the lack of conserved momentum
the~non!existence of exact traveling soliton solutions in no
integrable lattice models. While the problem still waits for
full solution, several important theoretical results have be
obtained. The substitution of an appropriate traveling ans
in the discrete equation gives rise to a differential-de
equation whose steady states are the traveling wave solu
of the original differential-difference equation~see, e.g.,
Refs.@17,18#, as well as an earlier work by Feddersen, R
@19#!. It is also pertinent to mention that moving soliton
clearly persist in simulations of perturbed systems, with
any conspicuous loss, for long times, which is sufficient
study their collisions in numerical experiments without a
biguity ~see, e.g., Refs.@14# and @20#!.

If the given system differs from the AL model by sma
terms, a natural question is how strong actual destructio
the former dynamical invariants, and especially of the m
mentum, which has a straightforward physical interpretat
~and remains a virtually conserved quantity for free mov
solitons, as explained above! will be in collisions between
solitons. One of main objectives of the present work is
address this issue. We will conclude that the momentum c
servation isstrongly violated by the collisions, even if the
perturbation parameters are quite small.

For two broadly separated AL solitons with parametersm j
andkj , expressions~7!–~9! take values

Nsol52(
j 51

2

m j , Qsol52(
j 51

2

~sinhm j !coskj , ~10!

Psol52(
j 51

2

~sinhm j !sinkj . ~11!

The fact that only two exact and, plausibly, one approxim
conserved quantities~the latter one is the momentum! con-
strain possible outcomes of the soliton-soliton collisio
which are characterized by two amplitudes, two velociti
and, in addition, may depend on the initial relative pha
Da05a022a01 and positions (x0)2 and (x0)1 of the soli-
tons, suggests that the above-mentioned radiationless en
exchange between the two solitons is quite feasible. Furt
more, for slow solitons~small kj ) the conservation ofQ be-
comes an amplitude constraint@see Eq.~6!#, and if ampli-
tudes are small too (m j→0), Q reduces toN, see Eq.~10!, so
that there actually remains the single constraint in this li
case.

II. NUMERICAL RESULTS

A. Setting up the problem

To perform simulations of the collisions, we notice thah
can actually be scaled out from Eq.~1!, leavingd and«/h2
05660
is
r
k

is
-

n
tz
y
ns

.

t

-

of
-
n

o
n-

e

,
,
e

rgy
r-

it

as independent control parameters, therefore in what follo
we fix h50.8. The parameters are varied in rang
corresponding to the weak quintic perturbatio
«P@20.01,0.01#, and moderately weak Salerno’s perturb
tion, dP@20.08,0.08#. Equation ~1! was integrated by
means of an implicit Crank-Nicholson scheme with the a
curacy ofO„(Dt)2

… and with reflecting boundary conditions
The initial condition was taken as a superposition of two
separated solitons~4! that would be exact solutions of the A
model, and the numerical integration was run until outgo
solitons were separated well enough. Their amplitudes

velocities after the collision,Ã1 , Ã2 , Ṽ1, andṼ2, were mea-

sured, and then the corresponding parametersm̃1 , m̃2 , k̃1,

and k̃2 were found inverting Eq.~6!. We also checked to
what extent the dynamical invariants given by the unp
turbed expressions~10! and~11!, as well as by the exact one
~2! and ~3!, were conserved.

To present the results, we will focus on the symmet
collisions: m15m25m, k152k25k. While simulations
were run for various values of the amplitudes and velociti
we display results for a case that turned out to be a typ
one, adequately representing many others, withm50.75, k
50.1. This implies A15A25A51.057, V152V25V
50.137. The initial phase differenceDa0 was controlled by
settinga0150 and choosinga02 from the interval~2p,p!.
The initial positions of the solitons were taken as (x0)1

52x01xc and (x0)25x01xc , with x0512; this provides
for the large initial separation 2x0524 between them, while
xc was chosen from the interval@0,1) to control the location
of the collision point.

The presentation of results is structured as follows:
first examine the effect of variation of the initial phase d
ferenceDa0 and collision pointxc on the outcome of the
collision. Then, we analyze how the approximate conser
tion of expressions~10! and ~11! correlates with the results
Finally, we examine the effect of combining the perturbati
parameters« and d, in order to demonstrate that the tw
perturbations may almost exactly cancel each other, t
making the collisions virtually elastic. We stress that resu
obtained at other values of parameters are completely ta
mount to those displayed below, provided that« and d re-
main small.

B. Sensitivity to the phase and position of the collision

In Fig. 1, values of the soliton parameters after the co
sion are presented as functions of the initial phase differe
Da0 for the case of the SM perturbation. In the part of t
interval (2p,p) which is not included, the collision is al
most completely elastic. It is obvious that, in the interv
uDa0u&0.5, the small perturbation is, in fact, a singular on
resulting in very strong effects~in other words, the elasticity
of soliton collisions in the AL lattice is a very fragile fea
ture!. Note that, in the case of a weakly perturbedcontinuum
NLS equation considered in Ref.@6#, noteworthy inelastic
effects in the collision of two solitons also took place
relatively small values ofuDa0u.
3-3
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C. Dynamical invariants

In the present case, the initial values of expressions~10!
and~11! areN53, Q53.273, andP50 ~the absolute values
of the initial momenta areuP1u5uP2u50.1642). Using the
exact expressions~2! and ~3!, we have checked that the n
values of the norm and energy for the initial solitons a
those observed after the collision are equal, in the case o
ordinary numerical accuracy employed, up to 1024 ~in rela-
tive units!; running simulations with higher accurac
~smallerDt), it was possible to check the norm and ener
conservation with the accuracy of up to 1026. Norm and
energy loss due to radiation loss remained completely ne
gible in all the cases considered. As concerns the differe
between the unperturbed expressions used in Eq.~10! and
the exact ones~2! and~3!, Fig. 2 demonstrates that the lar
est relative difference between them, which reflects a di
effect of the small perturbations, isDN/N;1023 for the
norm andDQ/Q;331023 for the energy. However, the
bottom panel in Fig. 2 shows that the momentum isnot con-
served in any approximation, in accordance with the fact t
the perturbed system has no translational symmetry.

The conservation ofN suggests that a simple relation b
tween the soliton amplitudes after the collision may be
pected: according to Eqs.~10!, m11m2 must keep the origi-
nal value with the accuracy;1023. On the contrary, the
momentum nonconservation promises a much worse a
racy in the prediction of a relation between the velociti
The conservation ofQ does not provide for an essential a
ditional information for small values ofk ~see above!, while

FIG. 1. Velocities and amplitudes of the solitons after the co
sion vs the phase differenceDa0, in the cased50.04, «50 ~the
Salerno model without quintic terms!. This and all the other case
are shown form50.75 andk50.1, see Eq.~6!. Four different
curves correspond to different positions of the collision point,xc

50, 0.25, 0.5, and 0.75. The collisions are strongly inelastic in
vicinity of Da050.
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largek implies the collision between fast solitons, when no
trivial effects will be very weak.

The comparison between the actual results of the collis
~dots! and predictions based on the approximate conserva
laws for the valuesN andP of the two solitons in the form of
Eqs.~10! ~dashed lines! is displayed in Fig. 3. As is seen, th
amplitude relation indeed follows from the norm conserv
tion in a very accurate form, while the conservation of t
momentum may be traced in a very crude form only.

Another salient feature of Fig. 3 is strong deviation of t
dots from the diagonal point (1.054,1.054) corresponding
the values of the parameters before the collision. Suc
feature was impossible in the case of the collision of a s
ton with its mirror image in the SM, examined in Ref.@14#.
A typical example of an inelastic collision~inducing this
effect! is shown in Fig. 4. The major cause of the effect is t
location of the collision central pointxc relative to the un-
derlying lattice.

Besides that, the phase difference between the collid
solitons may produce a similar symmetry-breaking effe
Indeed, if the AL solitons, described by Eqs.~4! and ~5!,
moving to the right and to the left~with k.0 and k,0,
accordingly! are given phase shifts1Df and2Df, this is
equivalent to the shift of the coordinatex, but solely in the
expressions for the solitons’ phases, byDx5f0 /k, which
hasequalsigns for both solitons. This means that the pha
pattern of the two-soliton configuration gets shifted byDx
relative to the shapes of the colliding solitons, which is
obvious cause for the symmetry breaking. The fact that

-

e

FIG. 2. The collision-induced changes of the net norm, ene
and momentum for the two solitons, defined as per Eqs.~10! and
~11!, vs Da0 for different values ofxc in the Salerno model~recall
that the tilde refers to the postcollision values of the correspond
quantities!. The quantities displayed in this figure are obtained
adding up their values for the two solitons~rather than by direct
calculation for the whole system!. If the norm and energy are de
fined by the exact expressions~2! and ~3!, rather than the approxi-
mate ones~10!, they are completely conserved.
3-4
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above-mentioned position and phase factors do not affec
collision symmetry in the integrable AL model is anoth
specific manifestation of its integrability.

D. The role of the perturbation strength

In Fig. 3 one can observe that, ford50.04 and«50, the
maximum possible soliton amplitude after the collision
Ãmax51.64, and the maximum possible postcollision velo
ity is Ṽmax50.263. These values@and, in particular, their
deviation from initial ones, (A,V)5(1.054,0.137)] may be
regarded as a measure of the departure of the pertu
model from the integrability. In Fig. 5, we useÃmax andṼmax
to gauge the deviation from the integrable case with the
crease of the perturbation strength~the cases of both the SM
and quintic perturbations are shown!. It is concluded that the
weak perturbations generate quite large inelastic effects,
inelasticity increasing almost linearly with the perturbati

FIG. 3. Relations between the solitons’ amplitudes~a! and ve-
locities~b! after the collision in the Salerno model. The dashed lin
show the relations predicted by the norm, energy, and momen
conservation for integrable AL chain, Eqs.~10! and ~11!. Dots are
numerical results for 2500 collisions, with values of the init
phase differenceDa0 taken from the interval@21.25,1.25# with a
step of 0.01, and the collision-point’s coordinatexc taken from
@0,1) with a step of 0.1. Note that the norm was taken in the
proximate form of Eq.~10!, which pertains to the unperturbe
Ablowitz-Ladik lattice. The relative nonconservation of this nor
after the collision is;1023 ~see the text!, while the exact norm of
the perturbed model, as given by Eq.~2!, is conserved exactly
within the numerical accuracy.
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parameter. For instance, the valued510.08 of the relative
perturbation parameter in the SM model gives rise
collision-induced changes of the soliton’s amplitude by
factor of .2, and of the absolute value of the velocity by
factor of .3.

Another noteworthy feature is the asymmetry of the pl
in Fig. 5. The asymmetry is due to the fact that intern
modes in the colliding solitons can be excited only whend
.0 ~for «50) or when«,0 ~for d50) @21#. Hence, in
these cases, we observe a combined effect of the radia
less energy exchange and the internal-mode excitation, w
for d,0, «50 and d50, «.0, only the former occurs
Naturally, the net nonintegrability-induced effects are stro
ger in the cases where the internal mode can be excited

E. Compensation of perturbation effects

In Ref. @6#, it was found that, in continuum models, in
elastic effects in soliton collisions can be strongly suppres
if contributions from different perturbations cancel ea
other. We have observed a similar feature in the pres

s
m

-

FIG. 4. An example of a strongly inelastic collision betwe
solitons in the AL system with a small onsite quintic perturbatio
d50 and«520.01. In this case,Da050 andxc50.2.

FIG. 5. The maximum possible amplitudeÃmax ~filled circles!

and velocityṼmax ~empty circles! of the soliton after the collision vs
the perturbation strengthsd and«: ~a,b! «50 ~the Salerno model!;
~c,d! d50 ~the quintic model!.
3-5
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model. In particular, in Fig. 6 we show the postcollision a
plitude Ã1 versusDa0 for three different perturbations. It i
clear that the cancellation takes place in case~c!, making the
norm and momentum exchange an order of magnit
smaller than in the other cases. Similar compensation eff
were observed ford50.08 and«50.01 in a wide range of
soliton parameters, including nonsymmetric collisions~be-
tween nonidentical solitons!. In fact, the possibility of the
mutual compensation between the Salerno and quintic
turbation is a strong proof to the assertion that different c
servative perturbations produce virtually identical effec
hence essentially the same results are expected from o
perturbations.

III. DISCUSSION AND CONCLUSIONS

In this work, we have quantified properties of collisio
between solitons in the AL model with weak Hamiltonia
perturbations. We have observed complex dependence
the outcomes of the collisions on the initial phase differen
between the solitons and exact location of the collision po
Strong inelastic effects, in the form of radiationless ene

FIG. 6. The amplitude of the first soliton after the collision,Ã1,
vs Da0 for xc50, 0.2, 0.4, 0.6, and 0.8, curves 1–5, respective
The perturbations have~a! d50.08, «50; ~b! d50, «50.01; ~c!
d50.08, «50.01.
r-

e-

k,
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and momentum exchange between colliding solitons,
generated by weak perturbations~for instance, a perturbation
with the relative strengthd50.08 gives rise to a change o
the solitons’ amplitudes by a factor exceeding 2). The effe
produced by different conservative perturbations are q
similar, suggesting that the results reported in this paper
generic. The exact and approximate conservation laws of
perturbed system were examined, with a conclusion that
small perturbations very weakly affect the norm and ene
conservation, but strongly destroy the conservation of
lattice momentum, which is explained by the absence of
translational symmetry in nonintegrable lattice models. S
tistical data collected for a very large number of collisio
validate this conclusion. Symmetry-breaking effects in t
collisions~which are simply explained by the dependence
the result on the location of the central point of the collisi
relative to the lattice, and by the phase difference betw
the colliding solitons! were highlighted, and their magnitud
was used to gauge the deviation of the perturbed model f
integrability. It was also shown that, properly combining tw
different perturbations, it is possible to almost exactly can
their integrability-destroying effects, thus constructing a p
turbed system in which collisions are practically elastic.

In this paper, we were dealing with collisions betwe
solitons with relatively large initial velocities. It would natu
rally be of interest to see how the picture presented is mo
fied for smaller collision velocities, and, in particular, to e
amine whether a fractal structure, similar to that observed
Ref. @7#, can be found in the present model. This issue w
be considered elsewhere.
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